Relation between the χ^2 , F and t distributions

The χ^2 distribution

If $Z \sim N(0,1)$ is a standard normal variable, then

 Z^2 has the χ^2 distribution with 1 degree of freedom.

If X_1 , X_2 are *independent* χ^2 variables with m and n degrees of freedom respectively, then X_1+X_2 has the χ^2 distribution with m+n degrees of freedom. In particular, if Z_1, \ldots, Z_n are independent samples from a standard normal distribution, then

 $\sum_{i=1}^{n} Z_i^2$ has the χ^2 distribution with n degrees of freedom.

Typical example

If $X_1,...,X_n$ are independent samples from a normal distribution, $X \sim N(\mu, \sigma^2)$, then $(X-\mu)/\sigma_{\sim}N(0,1)$, and

$$\sum_{i=1}^{n} \frac{(X_i - \overline{X})^2}{\sigma^2} \sim \chi^2_{n-1}$$

Note that one degree of freedom is lost due to taking the sample mean.

For our purposes, the following is particularly relevant:

If $Y_i = \alpha + \beta X_i + u_i$ with $u_i \sim N(0, \sigma^2)$ follows the assumptions of the classical linear regression model, then

 $\sum_{i=1}^{n} \frac{\hat{u}_{i}^{2}}{\sigma^{2}} = \text{RSS}/\sigma^{2} \text{ has the } \chi^{2} \text{ distribution with n-2 degrees of freedom}$

(Where $\hat{u}_i = \hat{\alpha} + \hat{\beta} X_i$).

In general, if we have k explanatory variables, X_1, \dots, X_k in our regression model, then $\sum_{i=1}^n \frac{\hat{u}_i^2}{\sigma^2} \sim \chi^2_{n-k-1}$.

Relationship between the t-statistic and the χ^2 statistic

The t-distribution is initially defined in terms of the standard normal and the χ^2 distribution.

Let Z~N(0,1), and let X~ χ^2_n , with the two variables independent.

Then $\frac{Z}{\sqrt{X/n}}$ has the t-distribution with n degrees of freedom.

Example: Let $X_1,...,X_n$ be independent samples from a normal distribution, $X_i \sim N(\mu, \sigma^2)$.

Then
$$\frac{(\overline{X} - \mu)}{(\sigma/\sqrt{n})} \sim N(0, 1)$$

While $\sum_{i=1}^{n} \frac{(X_i - \overline{X})^2}{\sigma^2} \sim \chi^2_{n-1}$.

It can be shown that these two variables are independent. Hence,

$$\frac{(\overline{X} - \mu)}{(\sigma/\sqrt{n})} = \frac{(\overline{X} - \mu)}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2 / (n-1)}} = \frac{(\overline{X} - \mu)}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2 / (n-1)} / \sqrt{n}}$$

 $=\frac{(\overline{X}-\mu)}{\hat{\sigma}^2/\sqrt{n}} = \frac{(\overline{X}-\mu)}{S.E.(\overline{X})} \sim t_{n-1}, \text{ which is exactly how we introduced the t-distribution in the first place.}$

For regression purposes, we know that the regression coefficient

$$\hat{\beta} \sim N(\beta, Var(\hat{\beta})), \text{ where } Var(\hat{\beta}) = \frac{\sigma^2}{\sum_{i=1}^n (X_i - \overline{X})^2}$$

Hence
$$\frac{(\hat{\beta} - \beta)}{\sqrt{\frac{\sigma^2}{\sum (X_i - \overline{X})^2}}} \sim N(0, 1).$$

We also have that $\sum_{i=1}^{n} \frac{\hat{u}_i^2}{\sigma^2} \sim \chi^2_{n-2}$, and it can be shown that these two variables are independent.

Dividing the standard normal variable by the root of the χ^2 variable over its degrees of freedom, and cancelling the sigma, we get

$$\frac{(\hat{\beta} - \beta)}{\sqrt{(\sum_{i} \hat{\mu}_{i}^{2})/(n-2)/(X_{i} - \overline{X})^{2}}} = \frac{(\hat{\beta} - \beta)}{\sqrt{\hat{\sigma}^{2}/\sum_{i} (X_{i} - \overline{X})^{2}}} = \frac{(\hat{\beta} - \beta)}{S.E.(\hat{\beta})}$$

Has the t-distribution with n-2 degrees of freedom. A similar result holds for the k-variable case.

The F-distribution

Let X_1 and X_2 be independent χ^2 variables with n_1 and n_2 degrees of freedom respectively. Then $(X_1/n_1)/(X_2/n_2)$ has the F-distribution with (n_1,n_2) degrees of freedom.

The F-distribution can be used for comparing the variances of two normal distributions. In regression analysis, it is absolutely crucial, for testing *restrictions* on the regression model, and in particular, testing the restriction that <u>all the explanatory variables are insignificant</u>.

We have already seen that the RSS/
$$\sigma^2$$
, $\sum_{i=1}^{n} \frac{\hat{u}_i^2}{\sigma^2} \sim \chi^2_{n-k-1}$.

It can be shown that, in the classical regression model, the Explained Sum of Squares (ESS) divided by σ^2 , that is $\frac{\sum (\hat{Y}_i - \overline{Y})^2}{\sigma^2}$ has the χ^2 distribution with k degrees of freedom, under the assumption of the null

distribution with k degrees of freedom, <u>under the assumption of the null</u> <u>hypothesis, that all the explanatory variables are insignificant</u>, that is that the true values of β_1, \dots, β_k are zero.

Hence, dividing and cancelling the σ^2 , we get that, under the null hypothesis

$$F = \frac{ESS/k}{RSS/(n-k-1)} \sim F(k,n-k-1)$$

We may therefore compare the resulting F statistic with the 95% or 99% etc. critical value of the appropriate F distribution. If the F-statistic exceeds this critical value, we may reject the null hypothesis that $\beta_1=\beta_2=...=\beta_k=0$, and conclude that the regression as a whole is significant, that is that the variables $X_1,...,X_k$ are jointly significant.