Relation between the χ^{2}, F and t distributions

The χ^{2} distribution
If $\mathrm{Z} \sim \mathrm{N}(0,1)$ is a standard normal variable, then
Z^{2} has the χ^{2} distribution with 1 degree of freedom.
If X_{1}, X_{2} are independent χ^{2} variables with m and n degrees of freedom respectively, then $X_{1}+X_{2}$ has the χ^{2} distribution with $m+n$ degrees of freedom. In particular, if Z_{1}, \ldots, Z_{n} are independent samples from a standard normal distribution, then
$\sum_{i=1}^{n} Z_{i}^{2}$ has the χ^{2} distribution with n degrees of freedom.

Typical example

If X_{1}, \ldots, X_{n} are independent samples from a normal distribution, $X \sim N\left(\mu, \sigma^{2}\right)$, then
$(X-\mu) / \sigma_{\sim} N(0,1)$, and
$\sum_{i=1}^{n} \frac{\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}} \sim \chi_{\mathrm{n}-1}^{2}$.
Note that one degree of freedom is lost due to taking the sample mean.
For our purposes, the following is particularly relevant:
If $Y_{i}=\alpha+\beta X_{i}+u_{i}$ with $u_{i} \sim N\left(0, \sigma^{2}\right)$ follows the assumptions of the classical linear regression model, then
$\sum_{i=1}^{n} \frac{\hat{u}_{i}^{2}}{\sigma^{2}}=\mathrm{RSS} / \sigma^{2}$ has the χ^{2} distribution with n-2 degrees of freedom
(Where $\hat{u}_{i}=\hat{\alpha}+\hat{\beta} X_{i}$).

In general, if we have k explanatory variables, $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{k}}$ in our regression model, then $\sum_{i=1}^{n} \frac{\hat{u}_{i}^{2}}{\sigma^{2}} \sim \chi_{n-k-1}^{2}$.

Relationship between the t-statistic and the χ^{2} statistic
The t -distribution is initially defined in terms of the standard normal and the χ^{2} distribution.

Let $\mathrm{Z} \sim \mathrm{N}(0,1)$, and let $\mathrm{X} \sim \chi_{\mathrm{n}}^{2}$, with the two variables independent.
Then $\frac{Z}{\sqrt{X / n}}$ has the t -distribution with n degrees of freedom.
Example: Let $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ be independent samples from a normal distribution, $X_{i} \sim N\left(\mu, \sigma^{2}\right)$.

Then $\frac{(\bar{X}-\mu)}{(\sigma / \sqrt{n})} \sim \mathrm{N}(0,1)$
While $\sum_{i=1}^{n} \frac{\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}} \sim \chi_{\mathrm{n}-1}^{2}$.
It can be shown that these two variables are independent. Hence,

$=\frac{(\bar{X}-\mu)}{\hat{\sigma}^{2} / \sqrt{n}}=\frac{(\bar{X}-\mu)}{S \cdot E \cdot(\bar{X})} \sim \mathrm{t}_{\mathrm{n}-1}$, which is exactly how we introduced the $\mathrm{t}-$ distribution in the first place.

For regression purposes, we know that the regression coefficient

$$
\hat{\beta} \sim \mathrm{N}(\beta, \operatorname{Var}(\hat{\beta})) \text {, where } \operatorname{Var}(\hat{\beta})=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}
$$

$$
\text { Hence } \frac{(\hat{\beta}-\beta)}{\sqrt{\sigma^{2} / \sum\left(X_{i}-\bar{X}\right)^{2}}} \sim \mathrm{~N}(0,1) \text {. }
$$

We also have that $\sum_{i=1}^{n} \frac{\hat{u}_{i}{ }^{2}}{\sigma^{2}} \sim \chi_{\mathrm{n}-2}$, and it can be shown that these two variables are independent.

Dividing the standard normal variable by the root of the χ^{2} variable over its degrees of freedom, and cancelling the sigma, we get

$$
\frac{(\hat{\beta}-\beta)}{\sqrt{\left(\sum \hat{u}_{i}^{2}\right) /(n-2) / \sum\left(X_{i}-\bar{X}\right)^{2}}}=\frac{(\hat{\beta}-\beta)}{\sqrt{\hat{\sigma}^{2} / \sum\left(X_{i}-\bar{X}\right)^{2}}}=\frac{(\hat{\beta}-\beta)}{\text { S.E. }(\hat{\beta})}
$$

Has the t -distribution with $\mathrm{n}-2$ degrees of freedom. A similar result holds for the k -variable case.

The F-distribution

Let X_{1} and X_{2} be independent χ^{2} variables with n_{1} and n_{2} degrees of freedom respectively. Then $\left(\mathrm{X}_{1} / \mathrm{n}_{1}\right) /\left(\mathrm{X}_{2} / \mathrm{n}_{2}\right)$ has the F -distribution with $\left(\mathrm{n}_{1}, \mathrm{n}_{2}\right)$ degrees of freedom.

The F-distribution can be used for comparing the variances of two normal distributions. In regression analysis, it is absolutely crucial, for testing restrictions on the regression model, and in particular, testing the restriction that all the explanatory variables are insignificant.

We have already seen that the RSS $/ \sigma^{2}, \sum_{i=1}^{n} \frac{\hat{u}_{i}^{2}}{\sigma^{2}} \sim \chi_{\mathrm{n}-\mathrm{k}-1}$.

It can be shown that, in the classical regression model, the Explained Sum of Squares (ESS) divided by σ^{2}, that is $\frac{\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2}}{\sigma^{2}}$ has the χ^{2} distribution with k degrees of freedom, under the assumption of the null hypothesis, that all the explanatory variables are insignificant, that is that the true values of $\beta_{1}, \ldots, \beta_{\mathrm{k}}$ are zero.

Hence, dividing and cancelling the σ^{2}, we get that, under the null hypothesis

$$
F=\frac{E S S / k}{R S S /(n-k-1)} \sim \mathrm{F}(\mathrm{k}, \mathrm{n}-\mathrm{k}-1)
$$

We may therefore compare the resulting F statistic with the 95% or 99% etc. critical value of the appropriate F distribution. If the F -statistic exceeds this critical value, we may reject the null hypothesis that $\beta_{1}=\beta_{2}=\ldots=\beta_{\mathrm{k}}=0$, and conclude that the regression as a whole is significant, that is that the variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{k}}$ are jointly significant.

